570

Acta Cryst. (1953). 6, 570

SHORT COMMUNICATIONS

Some observations on the crystallography of deformation twins. By E. O. Harr, Physics Depart-

ment, The University, Sheffield 10, England.

(Recetved 5 February 1953 and in revised form 23 March 1953)

Although text-books on metal physics usually include
some details on the crystallographic components of twins
(Schmid & Boas, 1950, p. 94; Barrett, 1943), no complete
table appears to have been published. The writer has
had occasion to tabulate these, and during this work a
number of errors in previous work were revealed. The
complete data on deformation twins are therefore given
in Table 1. :
Twin components
In this table K, is the composition plane, 7, is the
direction of shear, K, is the second undistorted plane,
and 7, is the direction lying in K, and in the plane of
shear. The magnitude of the shear is given by (Schmid &
Boas, 1950, p. 72)
s =2cot@,

where 0 is the angle between K, and K,. Since 6 can be
expressed as a function of the sides and angles contained
in the unit cell, an analytical expression for s, common
to one group of metals, can often be obtained. These
formulae will now be discussed in turn.

Hezxagonal metals

Here the expression for the shear is given as (Schmid
& Boas, 1950, p. 94)

_ (c/a)?—3
§ = V_30/7 .

Recent values of c/a ratios of these metals have been
inserted, and values of the shear calculated. They differ
slightly from those given by Schmid & Boas.

An anomalous case of twinning in magnesium has been
observed by Schiebold & Siebel (1931) with K; = (1011),
but this result has not been confirmed by other writers
(Bakarian & Mathewson, 1943; Barrett & Haller, 1947).
K, in this mode of twinning would be the basal (0001)
plane. The shear thus has the abnormally high value of
106:6 %, which, on energy grounds, might explain its
comparative rarity.

Titanium, like magnesium, also has abnormal modes of
twinning. Liu & Steinberg (1952) found, in addition to
the normal (1012) mode, other sets of twins with com-
position planes (1121), (1122), (1123) and (1124). Only
the first two of these have been confirmed by Rosi,
Dube & Alexander (1953). A (1100) plane is normal to
all these planes, and, since it is a plane of symmetry in
both twin and matrix, it must represent the plane of
shear. A study of atom positions in this plane thus enables
K,, 1, and s to be determined.

Table 1. Crystallography of twinning

Twinning indices

A

Metal Crystal structure K, N K,
«-Fe ~ B.-c.c. (112) [1I (112
Be H.c.p. (1012) [1011] (1012)
Ti H.c.p. (10I12)  [I011] (10I2)
Mg H.c.p. (1012)  [T011] (1012)
Zn H.c.p. (1012)  [10I1] (1012)
cd H.c.p. (1012) [1011] (1012)
Mg H.c.p. (10I1)  [I012] (0001)
(1121)  [1I26] (0001)

. (1122)  [1123] (0001)
o Hep. { (1123)  [II22] (000L)
(1124)  [2243] (112%)

B-Sn Tetragonal (301) [103]  (I01)
In Tetragonal (101) {101} (101)
As Rhombohedral (110) [001]  (001)
Bi Rhombohedral (110) [00I]  (001)
Hg Rhombohedral (110) [001]  (001)
Sb ) Rhombohedral (110) {001] (001)
(130) [310]  (110)
«-U* Orthorhombic { é i Zg ; [;:;1,2] ‘((i 173)) >

(121) ‘X X

Shear
7 S Theoretical shear Remarks
[111] 0-707 V2/2
[1011] 0-199 cla = 1-568
[1011] 0-189 2. cla = 1-587
[1011] 0-129 (e[a) ~3 cla = 1-624
[1011] 0-139 V3.cla cla = 1-856
[1011] 0171 cla = 1-886
[1010] 1-066 V3.alc
[1120] 0-638 ajc
[1120] 1276 2afc Anomalous
[1120] 1-914 3ajc modes
[2243] 0-468 (c?la? ~ 4)/2¢c|a
[101] 0-119 (c/2a)(a?/c®—3) cla = 0-541
{11} 0150 (c/a)(1—a?/c?) cla = 1078
IR ELS, £
Euo% 0-447 (  (3(1-+cos o)—cos® o}t 0+
[110] 0-125 o = rhombohedral angle & = 87° 247
[110] 0-299 6 = 81° 30’
‘X" 0228 6 = 83° 30’
[312] 0-228 6 = 83° 30
[311] 0-329 = 80° 40"

* Planes and directions marked X in inverted commas are irrational, but approximate values of their indices are given
where possible.



SHORT COMMUNICATIONS

Tetragonal metals

The composition plane of twinning in -tin has recently
been redetermined by Clark, Craig & Chalmers (1950) as
the (301) plane. The (010) plane is normal to this, and,
since it is a plane of symmetry, it must represent the
plane of shear. The intersection of these two planes gives
7y = [103] and a construction of atomic positions in the
twinned and untwinned state shows K, — (101), 7, —
[101].

Chalmers (1935) has studied the atom movements in-
volved in the twinning operation, but he took the lattice
as face-centred tetragonal (Clark & Craig, 1952). The
unit cell is, in fact, tetragonal with four atoms in the
special positions 0,0, 0; 0,4,1; 1,0, 2 and },}, % An
analysis of the atom movements shows that very few
of the atoms move into their new positions by simple
homogeneous shear. However, the atoms at 54,4 do
obey the homogeneous shear rule, and their movement
probably stabilizes the deformation twin and allows it to
develop.

‘The composition plane for twinning in indium has also
been recently determined (Becker, Chalmers & Garrow,
1952) as of the type (101). By considering the planes of
symmetry, as in the case of §-tin, the remaining twin
components and the shear can be determined.

Rhombohedral metals

The accepted components for twinning in these metals
are K; = (110), , = [001], K, = (001), 5, = [110].
The value for s can then be obtained as

4 cos « sin 4«

5= {1—3 cos? a+2 cos® x}}

or
2 cos o

°= {3(1+cos &) —cos? x}} ’

where A is the rhombohedral angle. This corrects the
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expression given in Schmid & Boas (1950, p. 94). The
redetermined values of the shear are listed.

o-Uranium

Cahn (1953) has studied the twinning modes of o-
uranium. This metal is orthorhombic, and some compo-
nents of the twins have irrational indices. Examples of
these are more common in minerals, for, in metals of high
symmetry, compound twins, with all elements rational,
are usually observed. Frank (1953) has shown how these
irrational modes are to be expected from a consideration
of the allied structure of zinec.
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Surface layer on crystalline quartz. By O. S. Heavexs, The University, Reading, Berks., England
(Received 7 March 1953)

In an X-ray examination of particles of crystalline
quartz, Nagelschmidt, Gordon & Griffin (1952) have
deduced the presence of an amorphous layer on the surface
of the particles. The presence of such a layer is assumed
by Clelland, Cumming & Ritchie (1952), who state that
such a layer may be produced by the action of hydro-
chloric acid on the crystal surface. The thickness of the
layer, deduced from the X-ray evidence, is of the order
of 300 A. Such a layer on a crystalline material would
be readily detected by electron diffraction. In the absence
of an amorphous surface layer, a rock-quartz crystal
surface yields a sharp Kikuchi pattern. Fig. 1{(a) shows
the pattern obtained after treating such a crystal surface
with boiling concentrated hydrochloric acid for 1 hr. The
pattern is found to be very slightly clearer than that
obtained before treatment. This may be due to the re-

moval by etching of a strained (but still crystalline)
surface layer.

It is of importance to know the minimum thickness of
amorphous layer which could be detected by obscuration
of the Kikuchi pattern. This will depend on the surface
microtopography. If the local surface nowhere makes an
appreciable angle with the mean surface, then (neglecting
refraction) the depth of penetration of the beam is given
by d ~3L6, where 6 is the glancing angle and L the
mean free path. Putting 6 = 0-01 radian and L ~ 1000 A,
we obtain d ~ 5 A. The presence of an amorphous layer
of this thickness would thus completely obliterate the
Kikuchi pattern. If the local surface makes large angles
with the mean surface the situation is less favourable.
For the worst case, in which the beam enters and leaves
a projection normally, the depth of amorphous layer



